

CMake - Cross-Platform Make

R. Douglas Barbieri

Made to Order Software Corporation

Introduction

What is CMake?
 Control the software compilation process using

simple platform-independent and compiler-
independent configuration files

 Generate native makefiles and workspaces that
can be used in the compiler environment of your
choice

 Provides packaging (using CPack) and testing
(using CTest)

Who is using it?

 Linden Lab (for their Second Life project)
 KDE4
 Boost
 MySQL
 The Half-Life 2 SDK
 Rosegarden
 Loads of others (see

http://www.cmake.org/Wiki/CMake_Projects) for
more details

http://www.cmake.org/Wiki/CMake_Projects

Why CMake?

 Better than other build systems:
 Custom GNU/Makefiles
 autoconf/automake
 CodeBlocks other FOSS IDEs (sadly, not DevC++)
 Microsoft Visual Studio and other proprietary IDEs
 Apple XCode

Why CMake (con't)

 Can target multiple compilers, build systems
and IDEs using a single set of configuration
files

 Other build systems are difficult to set up and
debug (particulary autoconf/automake)

 Has a simple to use language to allow
customization for multiple platforms with
relative ease.

 Great even for a single platform!

How Does it Work?

 CMake uses ”Generators” to create your
target build files

 Uses configuration files to target your
particular system

 Uses your custom config or existing rules to
locate and build against third party libraries

 Provides a simple language to help customize
for platform-specific idioms

Generators

 What are CMake Generators?
 They can produce make/project files for many

different IDEs, GNU/Make and Microsoft's Nmake
 Customized for your specific platform
 Able to produce tailored project files specific to

your favorite development IDE or system
 Lots are available!

Generators
GNU/Linux:

$ cmake
 The following generators are available on this platform:
 Unix Makefiles Generates standard UNIX makefiles.
 CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
 Eclipse CDT4 - Unix Makefiles Generates Eclipse CDT 4.0 project files.
 KDevelop3 Generates KDevelop 3 project files.
 KDevelop3 - Unix Makefiles Generates KDevelop 3 project files.

M$ Windows:
C:\ cmake
 Borland Makefiles Generates Borland makefiles.
 MSYS Makefiles Generates MSYS makefiles.
 MinGW Makefiles Generates a make file for use with mingw32-make.
 NMake Makefiles Generates NMake makefiles.
 Unix Makefiles Generates standard UNIX makefiles.

Generators (cont'd)
Visual Studio 6 Generates Visual Studio 6 project files.
Visual Studio 7 Generates Visual Studio .NET 2002 project files.
Visual Studio 7 .NET 2003 Generates Visual Studio .NET 2003 project
 files.
Visual Studio 8 2005 Generates Visual Studio .NET 2005 project files.
Visual Studio 8 2005 Win64 Generates Visual Studio .NET 2005 Win64 project
files.
Visual Studio 9 2008 Generates Visual Studio 9 2008 project files.
Visual Studio 9 2008 Win64 Generates Visual Studio 9 2008 Win64 project files.
Watcom WMake Generates Watcom WMake makefiles.
CodeBlocks - MinGW Makefiles Generates CodeBlocks project files.
CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
Eclipse CDT4 - MinGW Makefiles Generates Eclipse CDT 4.0 project files.
Eclipse CDT4 - NMake Makefiles....

...and etc.

Generators (cont'd)
MacOS/X:

$ cmake
The following generators are available on this platform:

Unix Makefiles Generates standard UNIX makefiles.
Xcode Generate XCode project files.
CodeBlocks - Unix Makefiles Generates CodeBlocks project files.
Eclipse CDT4 - Unix Makefiles Generates Eclipse CDT 4.0 project files.
KDevelop3 Generates KDevelop 3 project files.
KDevelop3 - Unix Makefiles Generates KDevelop 3 project files.

Generators (cont'd)

As you can see....
loads of

GENERATORS!!!!

Configuration Script Syntax
Here is a simple example (CMakeLists.txt):

The name of our project is "HELLO". CMakeLists files in this project can

refer to the root source directory of the project as ${HELLO_SOURCE_DIR} and

to the root binary directory of the project as ${HELLO_BINARY_DIR}.

cmake_minimum_required (VERSION 2.6)

project (HELLO)

Add executable called "helloDemo" that is built from the source files

"demo.cxx" and "demo_b.cxx". The extensions are automatically found.

add_executable (helloDemo demo.cxx demo_b.cxx)

Syntax (cont'd)
Add a library:

add_subdirectory (Hello)

Make sure the compiler can find include files from our Hello library.

include_directories (${HELLO_SOURCE_DIR}/Hello)

Make sure the linker can find the Hello library once it is built.

link_directories (${HELLO_BINARY_DIR}/Hello)

add_executable (helloDemo demo.cxx demo_b.cxx)

Link the executable to the Hello library.

target_link_libraries (helloDemo Hello)

Library Syntax

Library CMakeLists.txt:

Create a library called "Hello" which includes the

 source file "hello.cxx".

Any number of sources could be listed here.

add_library (Hello hello.cxx)

Demo

hello_world

Demo Time!

Demo

 Tutorial
 Step 1 – simple example with a configure file (.in)
 Step 2 – with a user-configurable option
 Step 3 – add install target and tests
 Step 4 – using a macro
 Step 6 – add installer commands
 Step 7 – turn on dashboard scripting

Demo

 SLiteChat – an open-source text chat client
for Second Life (http://www.slitechat.org/)

 Second Life – the official 3D viewer for
Second Life (http://www.secondlife.com/)

Q and A

Ask me questions!
And

Thanks for coming to my talk!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

