
Basic Video Game Development

Sonoma State University
Computer Science Colloquium

September 11, 2003

Presented by:
Bill Kendrick

New Breed Software
Davis, California

Where did I start?

● Atari 1200XL
8-bit computer
(48KB RAM, 5¼” 128KB disks)

● BASIC programming
language

● Self-taught from books
and magazines

Console/arcade games of the era
● Shooting games

Asteroids, Battlezone, Riverraid, Defender

● Racing games
Pole Position

● Sports games
Soccer, football, baseball, hockey

● Puzzle games
Chess, Checkers, Reversi

● Jump-n-run games
Pitfall, Lode Runner, Jumpman

● Hard to define
Pac-Man, Human Cannonball, Frogs 'n Flies

What do they have in common?

● Easy to learn

● Easy to play

● Runs on slow hardware with limited RAM

Why do we care today?

● Easy to learn
Larger potential audience

● Easy to play
More 'repeat customers'

● Runs on slow hardware with limited RAM
Handheld devices, cellphones, web
browsers!

Plus, they're FUN!

Let's get started

● Step 1:
What is the game about?

● Step 2:
What environment(s) is it expected to run in?

● Step 3:
???

● Step 4:
Profit!

“Stupid Joke” Game

● What is the game about?

Q: “Why did the chicken cross the road?”
A: “To get to the other side!”

You play the chicken. Your objective is to
cross a busy freeway to earn points.

Note: There is such a game. Activision's “Freeway” for the Atari
2600 game console, designed and written by David Crane, of
“Pitfall” fame!

Where will it run?
(The game, not the chicken!)

● Modern computers
(because they're easy to develop for)

● Keyboard or joystick control
(not mouse)

● Possibly handheld systems
(so be concerned about inputs!)

Let's get coding!

● C programming language
Well supported
Free compilers for various platforms & OSes
Simple to program
(It's all Bill knows!)

● Simple DirectMedia Layer
GNU Library General Public License (LGPL)
Runs on various platforms & OSes
Simple to program
Written in C! (has other 'bindings,' too)

What will we have?

● Chicken
Controlled by player's keyboard/joystick

● Cars
Automatically controlled;
Various densities, speeds, and speed
changes, based on difficulty level

Seriously... that's about all there is!

Boring program initialization

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO);

Forgot error checking!

if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO) < 0)
{

fprintf(stderr, “Error init'ing SDL: %s\n”,
SDL_GetError());

exit(1);
}

Open Display

SDL_Surface * screen;

screen = SDL_SetVideoMode(640, 480, 16, 0);

if (screen = = NULL)
{

fprintf(stderr, “Error: Can't open window! %s\n”,
SDL_GetError());

exit(1);
}

Load Images

(“SDL_image” is a helper library for SDL, also
released under the LGPL. It supports GIF, JPEG,
PNG and other formats.)

SDL_Surface * chicken_image_left[2];
SDL_Surface * chicken_image_right[2];

chicken_image_left[0] = IMG_Load(“chickenL1.png”);
chicken_image_right[1] = IMG_Load(“chickenL2.png”);

chicken_image_left[0] = IMG_Load(“chickenR1.png”);
chicken_image_right[1] = IMG_Load(“chickenR2.png”);

Again with the missing error checks!

Event-driven programming

User presses a key

User holds the key down

User lets go of the key

“Key press” event

...

“Key release” event

Use flags to keep track of keys you care about
(like arrow keys and “fire” buttons)

Typical event loop
done = FALSE;

do
{
 while (events pending)
 {
 ... handle events...;
 }

 move objects, handle collisions & other game logic;

 draw the screen;
}
while (done == FALSE);

In many cases, you'll also want to 'throttle'
the loop speed by idling at the end, if needed

(e.g., to not go faster than, say, 60fps)

Chicken Variables
NOTE: Being a quick-and-dirty designer, I came up with these various
variables as they became necessary. In other words, I designed the game
while writing it. BAD IDEA! You can get away with it with little games
like this, though. (But don't tell the profs I said that!)
int chicken_x;

int chicken_y;

int chicken_facing;

int anim_frame;

int chicken_hit_counter;

Where the chicken is on the screen

Direction chicken's facing (L/R)
Depends on last arrow key pressed

A little 'toggle' flag to switch between
frames of chicken animation

Only toggles when an arrow key is pressed

Int chicken_hit_counter;
When the chicken bumps into a car, she doesn't get squished like in “Frogger.”

She gets pushed down the screen (away from the goal), and the user is unable to
control her for a few seconds.

So, within the main loop of the game, we can do...

if (bumped by car)
 chicken_hit_counter = 20; /* for example */

...

if (chicken_hit_counter == 0)
 ... user controls work normally ...
else
{
 move chicken downwards;
 chicken_hit_counter = chicken_hit_counter – 1;
}

We can also draw a different
chicken graphic while
chicken_hit_counter>0

Chicken initialization!

/* center of the screen */
chicken_x = (640 – 32) / 2;

/* bottom of the screen */
chicken_y = (480 – 32);

/* arbitrary... */
chicken_facing = LEFT;

/* JUST AS IMPORTANT as _x and _y! */
chicken_hit_counter = 0;

/* arbitrary; 1'd do as well, cuz it just toggles */
anim_frame = 0;

To be modular, you could write it as:
(screen->w – 32) / 2

Better yet,
(screen->w – chicken_image_left->w) / 2

(assuming all chicken images are the same size)

Finally, on to the main event loop!

int done; /* Or “unsigned char” or... */
SDL_Event event;

...

done = FALSE;

do
{
 while (SDL_PollEvent(&event) > 0)
 {
 ... handle the events! ...
 }
}
while (!done);

Events we can handle: QUIT

if (event.type == SDL_QUIT)
{
 /* User clicked “Close” button on the window,
 process received a friendly 'KILL' signal... */

 done = TRUE; /* Simple! :^) */
}

Events we can handle: Key press

SDLKey key;
...

if (event.type == SDL_KEYDOWN)
{
 /* Key was PRESSED */

 key = event.key.keysym.sym;
 /* See why I made my own variable? */

 if (key == SDLK_q || key == SDLK_ESCAPE)
 {
 /* [Q] or [Escape] key; quit as well! */

 done = TRUE;
 }
}

Keep track of arrow keys
int keypressed_up, keypressed_down,
 keypressed_left, keypressed_right;

keypressed_up = FALSE;
keypressed_down = FALSE;
keypressed_left = FALSE;
keypressed_right = FALSE;

. . .
else if (key == SDLK_UP)
 keypressed_up = TRUE;

else if (key == SDLK_DOWN)
 keypressed_down = TRUE;

else if (key == SDLK_LEFT)
 keypressed_left = TRUE;

else if (key == SDLK_RIGHT)
 keypressed_right = TRUE;

Tedious, isn't it!?
Why not use an array?

Notice that SDL defines
arrows like so:

SDLK_UP = 273,
SDLK_DOWN = 274,
SDLK_RIGHT = 275,
SDLK_LEFT = 276,

Ref: “SDL_keysym.h”
header file

...and arrow key releases!

else if (event.type == SDL_KEYUP)
{
 /* A key has been RELEASED! */

 key = event.key.keysym.sym;

 if (key == SDLK_UP)
 keypressed_up = FALSE;

 else if (key == SDLK_UP)
 keypressed_down = FALSE;

 else if (key == SDLK_RIGHT)
 keypressed_right = FALSE;

 else if (key == SDLK_LEFT)
 keypressed_left = FALSE;
}

Look familiar?

Move the chicken!
 if (keypressed_up)
 {
 chicken_y = chicken_y - 4;
 }
 else if (keypressed_down)
 {
 chicken_y = chicken_y + 4;
 }

 if (keypressed_left)
 {
 chicken_x = chicken_x - 4;
 }
 else if (keypressed_right)
 {
 chicken_x = chicken_x + 4;
 }

(short for “keypressed_up == TRUE)”

Notice the use of “if” and not “else if” here!
This allows for moving diagonally by holding

two arrow keys at once!

Tests should occur to make sure
chicken remains in bounds, too!
e.g.,

if (chicken_x < 0)
 chicken_x = 0;

Draw the screen
First step is to ERASE it. Cheap way:

1. Erase the 'backbuffer'
SDL_FillRect(screen,

 NULL,

 SDL_MapRGB(screen->format,
 128, 128, 128));

2. Draw everything
[next slide]

3. Copy the backbuffer to the screen
SDL_Flip(screen);

Fill a rectangle with a solid color on
the main window (“screen”)'s backbuffer

Do it to the ENTIRE surface
(0,0) to (screen->w – 1, screen->h – 1)

(More on this later)

Determine the pixel value
for the surface (“screen”)

that makes up the following color

Red = 128
Green = 128
Blue = 128

...
GREY!

Draw the chicken

SDL_Rect dest;

. . .

dest.x = chicken_x;
dest.y = chicken_y;

SDL_BlitSurface(chicken_image_hurt, NULL,
 screen, &dest);

Let's start by just drawing the same shape, no matter what...

Source surface

SDL_Rect (pointer)
describing where inside

source surface to pull from
In our case, we want it ALL,

so we can use “NULL”
like we did with SDL_FillRect

Destination surface

SDL_Rect (pointer)
describing where in the

destination surface to put it

Speed problems

If we ran that, it'd go as FAST AS POSSIBLE. The faster the computer, the
faster it would wrong. Typically, you don't want that.

One solution is to alter the distance which objects move based on the
calculated speed of the event loop.

Pro: Great for accuracy in 3D simulations & shooters
Cons: Lots of math, floating point required, not very basic

So instead, just assume a minimum requirement for the game, and then
“throttle” it so it doesn't go faster than the FPS you declare.

(It certainly might go slower!)

Basic Throttle Technique

Our basic game loop:

do
{

... handle events ...

... game logic ...

... draw the screen ...

}
while (!done);

What time is it now?

Has it been 1/60th of a second yet?
If not, pause the program until it has been

Uint32 last_time, cur_time;
. . .

last_time = SDL_GetTicks();

cur_time = SDL_GetTicks();

if (cur_time < last_time + (1000 / 60))
 /* Wait for the remainder */
 SDL_Delay(last_time + (1000 / 60) – cur_time);

The game

Obvious improvements

● Different car colors
● Different kinds of vehicles (trucks, cycles)
● Lane markings and other artwork
● Varying traffic speeds
● Score display
● Timer
● Multiplayer
● Joystick control
● Difficulty options

– Get knocked to the beginning
– Inability to move left/right

References

New Breed Software
http://www.newbreedsoftware.com/

Simple DirectMedia Layer
http://www.libsdl.org/

Free Software Foundation (GNU License info.)
http://www.fsf.org/

Open Source Initiative (general Open Source info.)
http://www.opensource.org/

Linux Users' Group of Davis
http://www.lugod.org/

