
Linux for Scientific Computing

Bill Saphir
Berkeley Lab

wcs@nersc.gov

Things you should know if you’re
thinking about using

Linux for Scientific Computing

Bill Saphir
Berkeley Lab

wcs@nersc.gov

Random thoughts on
things you should know if you’re

thinking about using
Linux for Scientific Computing

Bill Saphir
Berkeley Lab

wcs@nersc.gov

Why?

Scientific research is one of the first areas
where Linux has had a major impact on
production, mission-critical computing.

Features of scientific computing

• Floating point performance is everything
(well, almost everything)

• Users write their own codes
• Legacy Fortran is common

• Full-featured user-friendly GUI interface not required

• Goal is science, not computer science.

Who are the foolish zealots?

• Data analysis in experimental physics
• Cern, Fermilab, SLAC, Brookhaven, DESY; Astrophysics

• Parallel computing on clusters
• Sometimes called “Beowulf” clusters
• Mini-supercomputers

• Thousands of random apps powered by graduate students

Outline
• Why Linux?
• Hardware

• Computer architecture
• Processors
• Benchmarks

• Serial computation
• Compilers
• Libraries

• Parallel computation
• SMP
• Clusters

Why Linux?

• Access to cheap hardware
• Control
• Availability of software
• Convergence
• Access to cheap graduate students
• Alternative to NT

Computer architecture for HPSC

P

M
Von Neumann

P

M
Faster

Processors

P

M
Memory bandwidth

important. Cache not
so important

pppppp
pppppp
pppppp

M
Vector

Processors no longer
with us (in US)

SMP

P

M

P P P

DMP

P

M

P P P

M M M

Processor support in Linux
• These supported processors are useful for scientific

computing:
• x86
• Alpha
• Sparc/Sparc64
• PowerPC
• MIPS

• Coming up:
• Power 3
• Merced

Which processor?

• Three important criteria

• Cost
• Performance
• Availability of software

Measuring Performance

• Peak
• Linpack
• STREAM (memory bandwidth)
• SPEC
• NPB and NSB

Current Peak Rates
Name MHz Flop/cycle Peak Mflop/s

Alpha 21264 677 2 1354
Alpha 21164 600 2 1200

Power 3 233 4 932

Sparc 450 2 900

PIII 550 1 550

R10K 250 2 500

Linpack

• The Linpack benchmark solves a dense linear algebra
problem -- BLAS 3

• Can be run in serial or parallel
• Because BLAS 3 can be blocked, Linpack effectively runs

in cache and gets a very high percentage of peak.
• Linpack is important for two reasons:

• Good basic test of whether a machine (parallel) can run or not
• Basis of Top 500 list (www.top500.org)

STREAM Benchmark

• Measures memory bandwidth
• http://www.cs.virginia.edu/stream
• Developed by John McCalpin
• 4 Tests

• Copy (A = B)
• Scale (A = s*B)
• Add (A = B + C)
• Triad (A = B + s*C)

Stream Results
Processor MHz Peak

(Mflop/s)
Triad
(2*MW/s)

Alpha 21264 500 1000 331
Alpha 21164 533 1066 73
Pentium II 400 400 79
Ultrasparc
(UE10K)

400 400 74

MIPS (O2K) 300 600 48
Power-3 200 800 ~250
Cray C90 1000 2375

SPEC95
• SPEC = Standard Performance Evaluation Corporation
• http://www.spec.org

• SPECint95
• 8 integer-intensive codes written in C

• SPECfp95
• 10 floating point-intensive codes written in Fortran
• All are scientific computations.

SpecFP 95

Processor MHz SPECfp95 SPECint95

Alpha 21264 500 48.4 23.6

Power 3 200 27.6 12.5

Ultrasparc 450 27.0 19.7

MIPS 250 23.2 15.1

Athlon 650 22.4 29.4
PIII/500 500 15.1 21.6

Alpha 21164 533 14.1 16.8

Multiprocessor machines

• x86/Alpha/Sparc/MIPS all available in SMPs
• Cache coherent shared memory
• Single copy of operating system
• Well-supported by Linux up to about 4 processors

• OS support is not the limiting factor.
Memory bandwidth is.
• Low-end SMPs share memory through a bus
• Nearly saturated by one processor. Two or more processes

compete for memory bandwidth.
• Expect 1.5x speedup max on Intel or current Alpha.

Software

• Compilers

• Libraries

• 3rd party software

Compilers
• Old standbys, available on all platforms

• C: gcc
• C++: g++
• Fortran 77: g77

• Open source but:
• g++ doesn’t handle complex C++ (e.g. heavy use of expression

templates)
• g77 is Fortran 77 only
• no parallelization for SMPs
• generated code is not very fast

x86 Compilers
• Portland Group (www.pgroup.com)

• Fortran 90/95/OpenMP parallelization/Better performance
(~10%)/HPF

• Kuck and Associates (www.kai.com)
• Better C++/OpenMP parallelization

• NAG (www.nag.com)
• Fortran 90/95/Tends to be picky

• Absoft (www.absoft.com)
• F90/95/Includes IMSL (RH 5.2?)

• Fujitsu (www.tools.fujitsu.com)
• C/C++/F90/F95

Alpha compilers

• Compaq/DEC compilers are available

• Better performance (optimized for Alpha)
• Full Fortran 90 (available now)

• http://www.digital.com/fortran/linux/
• C/C++ later

• NAG
• Fortran 95

Other compilers
• Ultrasparc

• Nothing more available

• MIPS
• Nothing more available

• Power-3
• IBM is looking into putting AIX compilers under Linux

NAS Parallel Benchmarks
• Developed at NASA Ames Numerical Aerodynamic

Simulation facility.
• Designed to measure performance of parallel computers
• 8 codes: 5 kernels and 3 pseudo-applications represent a

CFD workload.
• 5 sizes: S, W, A, B, C.
• Two versions

• NPB 1: pencil and paper (algorithm specified)
• NPB 2: specified by source code

• NAS Serial Benchmarks (NPB 2-serial) are single
processor versions of NPB 2.

A Few NSB results

• see http://www.nersc.gov/research/ftg/pcp/performance.html

Proc MHz Cmplr OS FP Avg
21264 ds20 500 DEC Tru64 182.1
21264 ds10 466 DEC Tru64 141
21264 xp 500 DEC Tru64 154.1
21264 xp 500 DEC Linux 132.1
21264 xp 500 gcc Linux 100.0
21164 600 DEC Tru64 65.9
PII 400 PGI Linux 53.4
Celeron 400 PGI Linux 45.1

Basic Free Numerical Libraries
There are many free libraries. Some of the more important

(and industrial strength) ones are:

• Optimized BLAS for x86
• http://www.cs.utk.edu/~ghenry/distrib

• FFTW: Fastest Fourier Transform in the West
• http://www.fftw.org

Don’t use numerical recipes!

Basic libraries - Commercial
• X86

• NAG (www.nag.com).
• IMSL (www.vni.com/products/imsl)

• Alpha
• Compaq Portable Math Library (CPML) -- libm replacement
• Compaq Extended Math Library (CXML)

More software

Two excellent sources of information.

• Scientific Applications on Linux at Kachinatech:
• http://sal.kachinatech.com

• Steven Baum’s Linux List
• http://stommel.tamu.edu/~baum/linuxlist/linuxlist/node6.html

Parallelism
• 2 types of concurrency in parallel applications

• Embarassing parallelism
• Little/no coupling between tasks
• Independent processes can be executed in parallel
• seti@home; analysis of event data from colliders; monte carlo

simulations.

• Everything else
• parallelism is fine-grained
• data distribution is fine-grained
• frequent communication
• main application focus of the rest of this talk

Parallelism
Three viable programming models
• Compiler-generated parallel code

• SMP only
• Not (yet?) widely used with Linux

• Threads
• SMP only
• Not widely used for scientific computing

• Message passing
• Distrbuted memory or SMP
• Widely used on clusters

• Non-viable alternatives: HPF, distributed shared memory

Compiler parallelization

• Compiler detects concurrency in loops and distributes
work in a loop to different threads.

for (i = 0; i < 1000000; i++)

a[i] = c[i] * (b[i+1] - 2b[i] + b[i-1]);

• Requires cache-coherent shared memory in general
• Compiler is usually assisted by compiler directives.
• OpenMP is the standard for Fortran and C

• KAI
• Portland group

Message Passing
• Programming model:

• Separate processes with separate address spaces
• Communication by cooperative send/receive
• Mixed MPI/threads possible in theory, but not supported in Linux

implementations.

• MPI (Message Passing Interface) is the industry standard.
• PVM should be used only when MPI can’t do the job.
• Hardware

• Distributed memory (cluster)
• Shared memory
• Mix of shared/distributed

Clusters
• A cluster is a collection of interconnected computers used

as a unified computing resource. (Pfister)
• Clusters can offer

• High performance
• Large capacity
• High availability
• Incremental growth

• Clusters used for
• Scientific computing
• Making movies
• Commercial servers (web/database/etc)

“Beowulf” clustering
• Clustering of x86-based Linux machines for scientific

computing was popularized by the Beowulf project at
Caltech/JPL.

• “Beowulf-class” is a slippery term, but usually implies:
• Off-the-shelf parts
• Low cost LAN
• Open source OS

• National labs are looking at highly-scalable non-beowulf
clusters for next generation of supercomputing.

How to build a cluster

• Building/maintaining a cluster is a lot of work

• Type of cluster depends on the type of job.
• Tightly coupled applications have more stringent

requirements.

• Expect a flood of software and documentation to appear
over the next year that makes it much easier to put together
clusters.

Architecture

Switch

Network setup
• Private network

• Cluster security/setup/administration much easier
• Application cannot interact with outside world

• Public network
• Security/setup/administration difficult. IP addresses needed.
• Interaction possible

• Firewall
• Most flexible
• Experts only

Local install or diskless?

• Local install
• Most natural if you’re used to installing desktops
• N separate copies of Linux to maintain
• Works best in completely homogeneous system

• Diskless install
• 1 copy of Linux to maintain
• Requires special tools to manage
• For many applications, scales up to 32 or 64 nodes

Node classification
• Interactive nodes

• Attached to external network
• Compile/edit/debug

• Fileserver nodes
• Global file systems (e.g. home directories)
• Remote filesystems for diskless clients

• Other service nodes
• Batch server/YP server/Security server

• Compute nodes
• Space-shared by parallel applications

Other cluster infrastructure

• YP (NIS) for user management

• BOOTP for IP address management

• Global filesystem.
• Necessary and expected
• Most important unsolved problem of clusters.
• No viable solution except NFS
• See http://pdsf.nersc.gov/talks/nfs/index.html

Other Hardware

• Network
• Fast ethernet. By far the most common.
• Gigabit ethernet. Expensive, not much faster
• Myrinet. Network of choice for high-end clusters. $1500-

$2000/node. Scalable.
• New networks on horizon: Giganet, Servernet II
• Virtual Interface Architecture may make high performance

networks more accessible and available.

• Serial console management
• Cyclades, Rocketport (comtrol.com) multiport serial cards

Other software

• MPI
• Get MPICH from http://www.mcs.anl.gov
• LAM is another free implementation, but no compelling reason to

use it.

• PBS
• Batch management system developed at NASA Ames
• Space shares the cluster; manages multi-user system
• Easily integrated with MPICH
• http://pbs.mrj.com

Task Farms

How would you do things differently for a task farm
(embarassingly parallel application)?

• Consider MOSIX to transparently load balance processes
• Switched network not necessary

Good news

More good news

Bad News

Downright Ugly

The Network Matters

More info on clusters
• How to Build a Beowulf. Sterling Becker, et. al.

MIT Press, 1999

• In Search of Clusters. Gregory Pfister.
Prentice Hall, 1998 (2nd edition)

• The Beowulf mailing list: “subscribe” to
beowulf-request@beowulf.gsfc.nasa.gov

• HOWTO:
http://www.beowulf-underground.org/doc_project/index.html

Open source presentation

http://www.nersc.gov/~wcs

