

Cross compiling to 6502 8-bit
systems with 'cc65'

Bill Kendrick
New Breed Software

Linux Users' Group of Davis
September 14, 2015

6502, a 40 year old CPU still in use!

● An 8-bit microprocessor
● Released in 1975 by MOS Technology

– MOS = Metal Oxide Semiconductor

– Former Motorola employees moved to MOS to produce a low-
cost CPU (alt. to 6800)

– Lots of history:
● https://en.wikipedia.org/wiki/MOS_Technology_6502
● http://6502.org/

● I'm not a CPU expert or historian; I'm sure some of you
here know way more than me <looks at Steve>

https://en.wikipedia.org/wiki/MOS_Technology_6502
http://6502.org/

Atari VCS...

● Atari, founded in 1972, began with arcade games (Pong, Space
War, etc.)

● 1977 the Video Computer System (VCS, later known as 2600) was
released
– 6502-based home video game console

– Cartridge-based (vs. built-in) games
● (2nd to do so, but arguably industry-changer)

– Inadverdently created 3rd-party game software industry

– RF-based output, TV-oriented video chip (TIA, Television Interface Adapter)

– Whopping 128 bytes of RAM; cart. ROMs up to 4K (w/o tricks)

– https://en.wikipedia.org/wiki/Atari_2600

https://en.wikipedia.org/wiki/Atari_2600

Atari 8-bits, the next VCS/2600?

● 1979, Atari 400 & 800 released
– 6502-based home computer; up to 48KB RAM, 10KB OS ROM, BASIC on cartridge

– “CTIA” or “GTIA” video-driving graphics chip

– “ANTIC” video coprocessor, w/ own instruction set

– “POKEY” I/O chip (sound, keyboard, analog-to-digital)

– “SIO” plug-n-play, daisy-chain'able serial bus interface
● Not as fast as parallel; designed to reduce RF output

(FCC regulations; see also: aluminum encasing)
● Disk drives, cassette drives, printers, MODEMs, etc.
● Joe Decuir, who holds patents for SIO, worked on USB!

– ROM-based cartridge software, too

– https://en.wikipedia.org/wiki/Atari_8-bit_family

● 1980s, XL and XE series of home computers (64-128KB RAM, 16KB ROM, etc.)
● 1982, Atari 5200 SuperSystem, based on 6502, GTIA, ANTIC & POKEY

– https://en.wikipedia.org/wiki/Atari_5200 ← so... yes :)

https://en.wikipedia.org/wiki/Atari_8-bit_family
https://en.wikipedia.org/wiki/Atari_5200

● Jay Miner, who worked on 2600 TIA and 400/800 CTIA & ANTIC, wanted to create a 16-
bit, floppy-disk-based game console
– “It's complicated” https://en.wikipedia.org/wiki/Amiga_Corporation

http://lowendmac.com/orchard/06/amiga-origin-commodore.html

● ANTIC + GTIA provided:
– 40 column, 24 row 2-color text

– 20x12 & 20x24 colored text modes (5 colors total)

– 40x12 & 40x24 multicolored text modes (4 colors per char.)

– 320x192 2-color high res. graphics

– 160x192, 160x96, 80x96 & 40x48 4-color graphics

– 128 colors (16 hues x 16 shades), mapped to 9 palette registers
(possible to get 256, too)

– Redefinable character sets (aka fonts; also useful for tile-based graphics)

– “Player/Missile Graphics”, aka “sprites”

– Hardware horizontal & vertical fine scrolling

FFWD - predecessor to the Amiga!

https://en.wikipedia.org/wiki/Amiga_Corporation
http://lowendmac.com/orchard/06/amiga-origin-commodore.html

More on Atari graphics

● Normal, narrow (thick borders), and wide (overscan) playfield modes
● ANTIC's instruction set define what's on the screen:

– What graphics mode? Where in RAM to fetch from? Enable scrolling? Call DLI? (below)

● Vertical Blank Interrupts (VBI) – mainline 6502 code is interrupted...
– Code that runs during while the CRT's electron beam returns to top left corner, to start a

new frame (reasonable amount of time for code to run, and runs regularly, 60x/second
(NTSC))

● Display List Interrupts (DLI) – mainline 6502 code is interrupted...
– Code that runs while beam returns to left side, as it scans (not very much time for code, but

happens ~12,000x/second)

– Useful for adjusting GTIA chip's registers, to change graphics at points down the screen
(e.g., player/missile position, color registers)

● VBI & DLI are useful for fast I/O
– Music & sfx playback. Reading mouse or Trak-Ball input device. Etc

Atari 8-bit Graphic Examples
(old & new)

cc65; an Atari C compiler

● 1989(?), cc65 created for the Atari 8-bit (written
using MAC/65 assembler on an Atari)
– cc65: compile C source to assembly

– ra65: assemble that into object file

– link65: link object with C runtime, build executable

– http://www.umich.edu/~archive/atari/8bit/Languages
/Cc65/

● 1997(?), ported to UNIX
● 1999, development continued...

http://www.umich.edu/~archive/atari/8bit/Languages/Cc65/
http://www.umich.edu/~archive/atari/8bit/Languages/Cc65/

cc65: a cross-platform compiler

● Today, compiles with GNU gcc, runs on:
– Linux, Windows, Mac OS X, etc.

● Targets various 6502-based platforms:
– Apple II

– Atari 2600, 8-bit computers, 5200, Lynx handheld

– Commodore computers (C=64, C=128, VIC20...)

– Nintendo Entertainment System (NES)

– ...and more

● (new) Home: http://cc65.github.io/cc65/
● Wiki: https://github.com/cc65/wiki/wiki

http://cc65.github.io/cc65/
https://github.com/cc65/wiki/wiki

Hello, world

● hello.c:
#include <stdio.h>
#include <unistd.h>
int main(void) {
 printf("hello world\n");
 sleep(2);
 return(0);
}

● Compile, assemble & link (one fell swoop, with “cl65”):
$ export CC65_HOME=/usr/local/share/cc65/
$ cl65 -t atari hello.c -o hello.xex

● Run in emulator:
$ atari800 -run hello.xex

Building one step at a time

● Compile C to assembly (.c → .s)
$ export CC65_HOME=/usr/local/share/cc65/
$ cc65 hello.c

● Assemble assembly to object (.s → .o)
$ ca65 hello.s

● Link object & runtime to executable
(.o & .lib → .xex)
$ ld65 hello.o atari.lib -t atari -o hello.xex

Peering inside (assembly)

.segment "RODATA"

L0003:
 .byte $68,$65,$6C,$6C,
$6F,$20,$77,$6F,$72,$6C,$64,$0A,
$00

; int __near__ main (void)

.segment "CODE"

.proc _main: near

.segment "CODE"

 lda #<(L0003)

 ldx #>(L0003)

 jsr pushax

 ldy #$02

 jsr _printf

 ldx #$00

 lda #$02

 jsr _sleep

 ldx #$00

 lda #$00

 jmp L0001

L0001: rts

.endproc

Peering inside (mapfile)

● Mapfiles contain a detailed overview of the modules used, the
sizes for the different segments, and a table containing
exported symbols
$ ld65 hello.o -t atari \
 -o hello.xex atari.lib \
 --mapfile hello.map

Character Sets on Atari
128 64 32 16 8 4 2 1
....----....----....----....---- = 0
....----....########----....---- = 24
....----################....---- = 60
....########----....########---- = 102
....########----....########---- = 102
....########################---- = 126
....########----....########---- = 102
....----....----....----....---- = 0

● Address 756 (0x2F4) used by OS, “Character Base
Register”, where ANTIC accesses (via DMA, Direct
Memory Access) the values to render in text modes

● Points to a 'page' (sections of 256 (0x100) bytes of
memory) where 1KB of font data is stored
– 128 characters x 8 bytes per character

Character Sets on Atari

● In BASIC:
10 MEMTOP=PEEK(106)
20 CHSET=MEMTOP-8:REM 4 pages = 1KB
30 POKE MEMTOP,CHSET
40 GRAPHICS 0
50 POKE 756,CHSET
60 CHSET=CHSET*256:REM pages->bytes
70 FOR I=0 TO 255
80 POKE CHSET+I,I
90 PRINT I;
100 NEXT I

Memory Configuration

● cc65 toolset requires a memory configuration file to define
the memory that is available to the cc65 run-time
environment
– http://cc65.github.io/doc/customizing.html#s2

– e.g. /usr/local/share/cc65/cfg/atari.cfg
● Let's make room for a font:

FONT: load = RAM, type = rw, define = yes align=$1000;

● Include the font, in that location:
#pragma data-name (push,"FONT")
#include "font.h"
#pragma data-name (pop)

http://cc65.github.io/doc/customizing.html#s2

Switch to the font

● #define CHBAS *(unsigned char *) 0x2F4
CHBAS = ((unsigned int) &font)/256;

● Alternatively,
#include <peekpoke.h>
POKE(756, ((unsigned int) &font)/256);

Let's Copy That Floppy!

● ATR floppy disk image format
– Used by emulators (atari800, etc.)

– Used with disk simulation cables & PC apps (SIO2PC,
AspeQt, etc.) & stand-alone devices (SIO2SD, etc.)

– Used with disk-emulating cartridges (MaxFlash, The!CART)

● “Franny”, open source tool to manipulate Atari disk
images (.atr) (there are other tools)
– Part of “atari8” open source project

http://atari8.sourceforge.net/

http://atari8.sourceforge.net/

Making a Disk

● franny -C mydisk.atr -d s -f a
– -C → create

– -d s → sector size: single density

– -f a → filesystem type: Atari DOS 2.x

● franny -F mydisk.atr
– -F → format

● franny -A mydisk.atr -i hello.xex -o HELLO.EXE
– -A → add file

– -i → input (source) local file

– -o → output (destination) filename in disk image

But that's not bootable :(

● atari800 bootable.atr mydisk.atr
● Run your “HELLO.EXE” off of drive 2, e.g. in

Atari DOS or MyDOS:
– [L]oad Memory

– D2:HELLO.EXE [Return]

Bill's Crazy Hack to Make Boot Disk

● Take a MyDOS bootable disk image
● Use “xxd(1)” to extract the first 3 sectors into a file

– Single density: 128 x 3 = 384 bytes (0x180)

● Use Franny or an emulator (e.g., atari800's “H:” device to read/write to
host filesystem) to extract “DOS.SYS” (bootable)

● Insert this step after “franny -F” to format your new disk image:
– (cat first3sectors.xxd ; xxd -s 0x180 mydisk.atr) \
| xxd -r > mydisk2.atr

● -s → seek (skip 384 bytes)
● -r → revert (from the combined cat & xxd dumps, back into a binary file)

● “franny … -O AUTORUN.SYS” (Atari DOS)
or “franny … -O HELLO.AR0” (MyDOS)

Some room to load

● In the .cfg file:
GFX: load = RAM, type = rw, define = yes;

● In the .c source:
#pragma bss-name ("GFX")
unsigned char gfx[1024];

● (see hello.3)
● The empty space isn't stored in the executable

file!

Why?

● Easier & faster development
– Makefiles, fast compiler, turbo mode in emulator

● C is well known & powerful
– BASICs are slow & less useful

– Action!/etc. are relatively uncommon

– Straight assember is hard :-P

– Structs & functions are useful

● Can code on laptop in livingroom near family
– Harder to do so with an Atari & CRT monitor :-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

