
Building an Embedded Linux Prototype

Devin Carraway, Chuck Groom

Blue Mug, Inc.

Contents copyright 2002 Blue Mug, Inc.

All rights reserved

Building an Embedded Linux Prototype – p.1/23

Overview

• About Blue Mug, Inc.

• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project

• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection

• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level

• User Interface
• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design

• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs

• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

Overview

• About Blue Mug, Inc.
• Project
• Hardware Selection
• Low-level
• User Interface

• UI Design
• Embeddable Linux GUIs
• Modifying Gtk+

Building an Embedded Linux Prototype – p.2/23

About Us

Devin and Chuck are project engineers

• We write specs, design products, and write code
• Devin is... Linux master
• Chuck is “that user interface guy”

Building an Embedded Linux Prototype – p.3/23

About Blue Mug, Inc.

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

• Located in Berkeley
• About 18 employees, 90% engineers
• Founded in 1999 (from Geoworks’ Mobile OS

Group)

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

We like Linux and embedded Linux, from several
points of view:

• Business: free, not a dead-end technology
• Developer: sane platform
• Users: stable, doesn’t suck

Building an Embedded Linux Prototype – p.4/23

About Blue Mug, Inc.

Blue Mug creates software for mobile devices

But we’re not a Linux-only company

• GEOS-SC OS
• PalmOS
• RTOS
• J2ME, BREW
• Small embedded projects

Building an Embedded Linux Prototype – p.4/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)

• Soft-key input
• Small gray-scale screen
• Palm-like battery life (22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input

• Small gray-scale screen
• Palm-like battery life (22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen

• Palm-like battery life (22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen
• Palm-like battery life (22hrs)

• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen
• Palm-like battery life (22hrs)
• Can run simultaneous apps

• Multiple access points (modem, PCMCIA for
Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

The Project

Our client asked us to create a prototype for a device:
• Low-cost (<$100)
• Soft-key input
• Small gray-scale screen
• Palm-like battery life (22hrs)
• Can run simultaneous apps
• Multiple access points (modem, PCMCIA for

Ethernet, Bluetooth, etc.)

Building an Embedded Linux Prototype – p.5/23

Project Example Mockup

Building an Embedded Linux Prototype – p.6/23

Hardware Selection

Which embeddable system-on-a-chip to use?

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

Considerations:

• Performance
• Price
• Power consumption

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

StrongARM, PPC use too much power, cost too much

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

MIPS, SH are struggling

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board.

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board.

• 75Mhz ARM7

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board.

• 75Mhz ARM7
• 16Mb Flash, 16Mb RAM

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board.

• 75Mhz ARM7
• 16Mb Flash, 16Mb RAM
• Low-power (170mw)

Building an Embedded Linux Prototype – p.7/23

Hardware Selection

Which embeddable system-on-a-chip to use?

ARM is cheap, low-power, reasonably fast.
We choose the Cirrus Logic EP7211 board.

• 75Mhz ARM7
• 16Mb Flash, 16Mb RAM
• Low-power (170mw)
• Successor to PS7110 used in Psion Series 5, for

which there is a Linux port.

Building an Embedded Linux Prototype – p.7/23

System Overview

• Two 8Mb banks of Flash
• Kernel in one bank
• Root file system in other bank (mounted

read-only)
• /tmp in RAM
• User files, add-on apps in RAM
• No swap!

Building an Embedded Linux Prototype – p.8/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed
• Tricky; dynamic linking, c library...

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed
• Tricky; dynamic linking, c library...

• RAM usage

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed
• Tricky; dynamic linking, c library...

• RAM usage
• Could do XIP from RAM

Building an Embedded Linux Prototype – p.9/23

Size/RAM issues

• Size: 8Mb for all libraries, GUI, windowing system,
and apps
• JFFS2 and cramfs (compressed file systems)

weren’t ready at the time
• Could compile in Thumb (16-bit) instruction set

• Size-for-speed
• Tricky; dynamic linking, c library...

• RAM usage
• Could do XIP from RAM
• Never ran out of RAM in testing

Building an Embedded Linux Prototype – p.9/23

Low-Level: OOM

Out of Memory – What to do?

Easier on embedded system
• Known set of processes (eg. BeOS’ “kill the

browser” approach)
• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations

Building an Embedded Linux Prototype – p.10/23

Low-Level: OOM

Out of Memory – What to do?

Difficult on desktop. Linux kills processes based on
CPU usage, run time, and access to privileged I/O
resources.

Easier on embedded system
• Known set of processes (eg. BeOS’ “kill the

browser” approach)
• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations

Building an Embedded Linux Prototype – p.10/23

Low-Level: OOM

Out of Memory – What to do?

Difficult on desktop. Linux kills processes based on
CPU usage, run time, and access to privileged I/O
resources.

Easier on embedded system

• Known set of processes (eg. BeOS’ “kill the
browser” approach)

• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations

Building an Embedded Linux Prototype – p.10/23

Low-Level: OOM

Out of Memory – What to do?

Difficult on desktop. Linux kills processes based on
CPU usage, run time, and access to privileged I/O
resources.

Easier on embedded system
• Known set of processes (eg. BeOS’ “kill the

browser” approach)
• Tie into UI to display warning or errors
• Require apps to be aware of low-memory

situations

Building an Embedded Linux Prototype – p.10/23

Low-Level: Memory Mapping

EP7211 memory is non-contiguous

• Use kernel macros to map between actual and
linear presentation of memory

Building an Embedded Linux Prototype – p.11/23

Low-Level: Memory Mapping

EP7211 memory is non-contiguous

• Use kernel macros to map between actual and
linear presentation of memory

Building an Embedded Linux Prototype – p.11/23

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard

• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Building an Embedded Linux Prototype – p.12/23

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc

• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Building an Embedded Linux Prototype – p.12/23

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API

• Diet libc: Reduced-size, breaks API

Building an Embedded Linux Prototype – p.12/23

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Building an Embedded Linux Prototype – p.12/23

Low-Level: Which C Library?

C library is almost as big as kernel. Which C library to
use?

• glibc: GNU C library, the standard
• sglibc: Patched glibc
• µCLibc: Reduced-size, standard API
• Diet libc: Reduced-size, breaks API

Start with GLibC, move to sglibc.

Building an Embedded Linux Prototype – p.12/23

User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Building an Embedded Linux Prototype – p.13/23

User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Building an Embedded Linux Prototype – p.13/23

User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Good: Palm UI fits small-screen, stylus-central
organizer

Building an Embedded Linux Prototype – p.13/23

User Interface: Design Principles

• The user interface (UI) can mean the success or
failure of a consumer device

• You can’t have a general-purpose mobile device
GUI; it must fit device particulars

Good: Palm UI fits small-screen, stylus-central
organizer

Bad: WinCE UI presents entire desktop interface on

small screen

Building an Embedded Linux Prototype – p.13/23

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility = urgency

• Objective: get job done
• Technology: avoid unless necessary
• Status notification: don’t alert unless problem
• Rich feature set: device feels unpredictable

Building an Embedded Linux Prototype – p.14/23

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility = urgency
• Objective: get job done

• Technology: avoid unless necessary
• Status notification: don’t alert unless problem
• Rich feature set: device feels unpredictable

Building an Embedded Linux Prototype – p.14/23

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility = urgency
• Objective: get job done
• Technology: avoid unless necessary

• Status notification: don’t alert unless problem
• Rich feature set: device feels unpredictable

Building an Embedded Linux Prototype – p.14/23

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility = urgency
• Objective: get job done
• Technology: avoid unless necessary
• Status notification: don’t alert unless problem

• Rich feature set: device feels unpredictable

Building an Embedded Linux Prototype – p.14/23

User Interface: User Goals

Always keep the user’s goals in mind.

• Mobility = urgency
• Objective: get job done
• Technology: avoid unless necessary
• Status notification: don’t alert unless problem
• Rich feature set: device feels unpredictable

Building an Embedded Linux Prototype – p.14/23

User Interface: Givens

• Instant response to user interaction

• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model

• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control

• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen

• Cheap screen
• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small

• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power

• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface

• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed

• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Givens

• Instant response to user interaction
• Always-on app model
• Primarily softkey control
• No touchscreen
• Cheap screen

• Small
• Grays cost power
• Low-contrast

• “Walk up and use” interface
• Borrow desktop elements as needed
• Limit choices

Building an Embedded Linux Prototype – p.15/23

User Interface: Our Design

(This is a conceptual mockup)

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Use desktop GUI widgets with softkey control

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Place options in menu. Hide menu to save screen
space, but indicate existence.

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Menu bar includes time and battery.

Building an Embedded Linux Prototype – p.16/23

User Interface: Our Design

Menu is modal and takes control of softkey bar. Other
widgets are inactive.

Building an Embedded Linux Prototype – p.16/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.

• Softkeys can be stand-alone
• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy

rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.
• Softkeys can be stand-alone

• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy

rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.
• Softkeys can be stand-alone
• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy

rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.
• Softkeys can be stand-alone
• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy

rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.
• Softkeys can be stand-alone
• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs

• When we launch an app, display “zoomy
rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Other Elements

Other misc. design elements...

• Softkeys vs. buttons.
• Softkeys can be stand-alone
• Use buttons when action affects pane.

• Added “indeterminate” state to radio buttons,
check boxes

• Dialogs
• When we launch an app, display “zoomy rectangle”

Building an Embedded Linux Prototype – p.17/23

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

How do we implement this interface?

→ Tweak existing UI. There are many possible Linux
UIs to pick between.

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Criteria:

• Completeness
• Size
• Multiple apps can access framebuffer
• Language (C, C++)
• License

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

• Gtk+
• Qt/e
• FLTK
• OpenGUI
• MiniGUI
• PicoGUI
• Microwindows
• ...

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Narrowed to Gtk+ or Qt/e

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Qt
• KDE Desktop
• Developed by TrollTech
• C++ framework
• Qt/E is reduced, runs on framebuffer
• QTopia app infrastructure
• Pain to compile
• Dual-license

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Gtk+
• GNOME Desktop
• Open source project
• C
• Developed on X; also Gtk+/fb
• LGPL

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Decided on Gtk+ running on X

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Decided on Gtk+ running on X

X Windows! Eek!

• Client-server windowing system
• Network-transparent
• 20 years old
• Widely regarded as bloated and archaic

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Decided on Gtk+ running on X

We like X

• X is stable
• Network-transparency is helpful
• TinyX

Building an Embedded Linux Prototype – p.18/23

User Interface: Embeddable Linux
GUIs

Decided on Gtk+ running on X

Modified AEWM window manager

• Vertical title bars
• Inter-app communication
• Application-level awareness of modal dialogs

Building an Embedded Linux Prototype – p.18/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow (*)
• Font management (*)

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing

• Widget drawing
• GtkWindow (*)
• Font management (*)

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing

• GtkWindow (*)
• Font management (*)

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow (*)

• Font management (*)

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow (*)
• Font management (*)

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow (*)
• Font management (*)

Changes in-place, not sub-classed

Building an Embedded Linux Prototype – p.19/23

User Interface: Modifying Gtk+

• Trim unnecessary widgets (eg. file dialog, color
selection)

• Widget sizing
• Widget drawing
• GtkWindow (*)
• Font management (*)

2.9Mb footprint for Gtk+/X; this could be reduced to

2.4Mb.

Building an Embedded Linux Prototype – p.19/23

User Interface: GtkWindow

• Application window talks to window manager

• Application window has-a softkey bar
• Not nested within widget

• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget

• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget

• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window

• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: GtkWindow

• Application window talks to window manager
• Application window has-a softkey bar

• Not nested within widget
• API to register softkeys on application window
• Scrolling full-screen window

Building an Embedded Linux Prototype – p.20/23

User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

Building an Embedded Linux Prototype – p.21/23

User Interface: Font

To change a font in stock Gtk+:
• Clone widget’s GtkStyle
• Load a new X font, such as
-adobe-helvetica-bold-r-normal-
12-*-*-*-p-*-iso8859-1

GtkStyle is fairly big, so this is expensive. And the
developer has to know the specific font name.

Building an Embedded Linux Prototype – p.21/23

User Interface: Font

We wrote API for requesting fonts by attribute relative
to the base font.

Building an Embedded Linux Prototype – p.21/23

User Interface: Font

We wrote API for requesting fonts by attribute relative
to the base font.
gtk widget set font bold (widget, TRUE);
gtk widget set font enlarge (widget, 1);

Building an Embedded Linux Prototype – p.21/23

User Interface: Font

We wrote API for requesting fonts by attribute relative
to the base font.
gtk widget set font bold (widget, TRUE);
gtk widget set font enlarge (widget, 1);

We added a GdkFont * font to GtkWidget. Use
widget->font if possible, otherwise use
widget->style->font

Building an Embedded Linux Prototype – p.21/23

User Interface: Font

We wrote API for requesting fonts by attribute relative
to the base font.
gtk widget set font bold (widget, TRUE);
gtk widget set font enlarge (widget, 1);

We added a GdkFont * font to GtkWidget. Use
widget->font if possible, otherwise use
widget->style->font

You can request font changes even before Gtk+ knows

the base font.

Building an Embedded Linux Prototype – p.21/23

User Interface: Performance

• Slow launch times

Building an Embedded Linux Prototype – p.22/23

User Interface: Performance

• Slow launch times
• 2.4 seconds for most complicated app
• Memory bandwidth bottleneck
• For now, display eye candy when app is

launched
• In future, predictively launch applications

Building an Embedded Linux Prototype – p.22/23

User Interface: Performance

• Slow launch times
• Loading pixmaps

Building an Embedded Linux Prototype – p.22/23

User Interface: Performance

• Slow launch times
• Loading pixmaps

• XPM format is bulky
• Gtk+’s XPM parser sucks
• Hack parser
• Hand post-rendered pixmaps to X server

Building an Embedded Linux Prototype – p.22/23

User Interface: Performance

• Slow launch times
• Loading pixmaps
• Floating point calculations

Building an Embedded Linux Prototype – p.22/23

User Interface: Performance

• Slow launch times
• Loading pixmaps
• Floating point calculations

• Floating point calculations are expensive on
ARM

• Gtk+ uses floating points for widget positioning
• Integer math positioning gives a 3-12%

speedup

Building an Embedded Linux Prototype – p.22/23

Conclusion

• We’re happy with our choice of Gtk+/X

• OSS made this project possible
• Demo!
• Questions?

Building an Embedded Linux Prototype – p.23/23

Conclusion

• We’re happy with our choice of Gtk+/X
• OSS made this project possible

• Demo!
• Questions?

Building an Embedded Linux Prototype – p.23/23

Conclusion

• We’re happy with our choice of Gtk+/X
• OSS made this project possible
• Demo!

• Questions?

Building an Embedded Linux Prototype – p.23/23

Conclusion

• We’re happy with our choice of Gtk+/X
• OSS made this project possible
• Demo!
• Questions?

Building an Embedded Linux Prototype – p.23/23

	Overview
	About Us
	About Blue Mug, Inc.
	The Project
	Project Example Mockup
	Hardware Selection
	System Overview
	Size/RAM issues
	Low-Level: OOM
	Low-Level: Memory Mapping
	Low-Level: Which C Library?
	User Interface: Design Principles
	User Interface: User Goals
	User Interface: Givens
	User Interface: Our Design
	User Interface: Other Elements
	User Interface: Embeddable Linux GUIs
	User Interface: Modifying Gtk+
	User Interface: GtkWindow
	User Interface: Font
	User Interface: Performance
	Conclusion

