
basho

Riak
Daniel Reverri

dan@basho.com

What’s in store?

• At a High Level

• For Developers

• When and Why

• In Production

• Etc.

At a High Level

Riak

• Dynamo-inspired key/value store

• + Extras: search, MapReduce, 2i, links,
pre- and post-commit hooks, pluggable
backends, HTTP and binary interfaces

• Written in Erlang with C/C++

• Open source under Apache 2 License

Riak History

• Started internally at Basho in 2007

• Deployed in production the same year

• Used as data store for Basho’s SaaS

• Open sourced in August 2009; Basho
pivots

• Hit v1.0 in September 2011

• Now being used by 1000s in production

Riak’s Design Goals

• High-availability

• Low-latency

• Horizontal Scalability

• Fault Tolerance

• Ops Friendliness

• Predictability

Masterless Cluster of
Nodes

For Developers

Buckets, Keys, Values

• Buckets contain many Keys

• Keys have Values

• Values can be of any type (content
agnostic)

key

key value

key value

bucket

key value

bucket

key value

key value

key value

APIs

• HTTP (just like the web)

• Protocol Buffers (thank you, Google)

Querying

• Get, Put, Delete

• Map Reduce

• Full Text Search

• Secondary Indexes

Ruby, Node.js, Java, Python, Perl, OCaml,
Erlang, PHP, C, Squeak, Smalltalk, Pharoah,
Clojure, Scala, Haskell, Lisp, Go, .NET, Play,
and more (supported by either Basho or the
community).

Client Libraries

Protocol Buffers

Client Libraries

HTTP

Riak KV Riak Search Riak Pipe

Riak Core

Bitcask LevelDB Merge Index

Modular

Riak: when and why

When to Use Riak

• When you have enough data to require >1
physical machine (preferably >4)

• When availability is more important than
consistency

• When your data can be modeled as keys
and values

• User profile storage
for xfinityTV Mobile
app

• Storage of metadata
on content providers
and licensing

• Strict Latency
requirements

User/MetaData Store

Notifications

• First Basho customer
in 2009

• Every hit to a Mochi
web property results
in at least one read,
maybe write to Riak

• Unavailability or
high latency = lost
ad revenue

Session Storage

Ad Serving

• OpenX will serve ~4T ad in 2012

• Started with CouchDB and Cassandra for
various parts of infrastructure

• Now consolidating on Riak and Riak Core
for real-time data serving

• Voxer

• Users

• Media

• Timelines

Asset Storage

Voxer: Initial Stats

• 11 Riak nodes (switched from CouchDB)

• 500GB Data set

• ~20k Peak Concurrent Users

• ~4MM Daily Request

Voxer: Post Growth

• ~60 Nodes

• 100s of TBs of data (>1TB daily)

• ~400k Concurrent Users

• >2B Daily Requests

Etc...

New in 1.2

• LevelDB Improvements

• FreeBSD Support

• New Cluster Admin Tools

• Folsom for Stats

• Much much more

Future Work

• Active Anti Entropy

• Bonafide Data Types

• Solr Integration

• Dynamic Ring Sizing

• Consistency

• Lots of other hotness

In Production

OS/Platforms/Software

• Riak will run on pretty much anything
except for Windows (right now)

• Basho builds packages for various
environments: FreeBSD, RHEL, Debs,
CentOS, Ubuntu, OpenSolaris, and a few
more.

• If you build from source, you’ll need
Erlang. We package it with our builds.

Command Line Tools

• riak - start, stop, ping

• riak-admin - status, cluster, etc.

Start a node

Add a node to a cluster

Stop a node

$ riak-admin cluster join <node>

$ riak start

$ riak stop

Remove a node from cluster
$ riak-admin cluster leave

Cluster/Node Admin

Upgrades

• Basho tests and verifies upgrades two
releases back (i.e 1.0 and 1.1 are verified
for 1.2)

• Rolling upgrade: stop, upgrade, start

• WIP: Automating rolling upgrades with
Chef

Backups

• Bitcask and LevelDB are both log-
structured stores; cp, rsync, tar, custom
backup tools will work

• FS-level snapshots of directory; can be
done while node is running

• Consistent snapshots can be difficult;
Point-in-time is easier to accomplish

Config Files

• app.config - controls all the Riak and
Erlang application setting; ports, search,
core, pipe, backends, etc.

• vm.args - handles embedded Erlang node
settings; node IPS, cookies, heart, etc.

• Config changes require a node restart

Configuration
Management

• Chef cookbook - Basho maintained; more
than 10 community contributors

• Puppet module - community maintained

Benchmarking

• Riak ships with sane defaults; we favor
safety over speed

• N=3, R=W=2

• Bad for micro-bencharks, good for
production and durability

• Basho develops Basho Bench, an open
source k/v benchmarking tool. Uses R for
graphing.

Security
• Riak has *no* built-in security (neither

authentication or authorization); this will
be the case for the foreseeable future.

• Exposing your DB to the Internet is a bad
idea, Riak or otherwise.

• We prefer to let you use your existing
tools and methods (because everyone has
their preference). Put Riak behind a
firewall.

http://ricon2012.com

When and where?
Wednesday, October 10 through Thursday, October 11

at the W Hotel in downtown San Francisco.

Riak

• wiki.basho.com/Riak.html

• @basho

• github.com/basho

basho

Questions?
Daniel Reverri

dan@basho.com

Under the Hood

Consistent Hashing and Replicas

Virtual Nodes

Vector Clocks

Gossiping

Append-only stores

Handoff and Rebalancing

Erlang/OTP

Consistent Hashing

• 160-bit integer keyspace

0

2160/2

2160/4

Consistent Hashing

• 160-bit integer keyspace

• divided into !xed number
of evenly-sized partitions

32 partitions

0

2160/2

2160/4

Consistent Hashing

• 160-bit integer keyspace

• divided into !xed number
of evenly-sized partitions

• partitions are claimed by
nodes in the cluster 32 partitions

node 0

node 1

node 2

node 30

2160/2

2160/4

Consistent Hashing

• 160-bit integer keyspace

• divided into !xed number
of evenly-sized partitions

• partitions are claimed by
nodes in the cluster

• replicas go to the N
partitions following the
key

node 0

node 1

node 2

node 3

Consistent Hashing

• 160-bit integer keyspace

• divided into !xed number
of evenly-sized partitions

• partitions are claimed by
nodes in the cluster

• replicas go to the N
partitions following the
key

node 0

node 1

node 2

node 3

hash(“meetups/nycdevops”)

N=3

Disaster Scenario

Disaster Scenario

• node fails
X

X

X
X

X

X

X
X

Disaster Scenario

• node fails

• requests go to fallback

X

X

X
X

X

X

X
X

hash(“meetups/nycdevops”)

Disaster Scenario

• node fails

• requests go to fallback

• node comes back

hash(“meetups/nycdevops”)

Disaster Scenario

• node fails

• requests go to fallback

• node comes back

• “Hando"” - data returns
to recovered node

hash(“meetups/nycdevops”)

Disaster Scenario

• node fails

• requests go to fallback

• node comes back

• “Hando"” - data returns
to recovered node

• normal operations
resume

hash(“meetups/nycdevops”)

Virtual Nodes
• Each physical machine runs a certain
number of Vnodes

• Unit of addressing, concurrency in Riak

• Storage not tied to physical assets

• Enables dynamic rebalancing of data
when cluster topology changes

Vector Clocks
• Data structure used to reason about
causality at the object level

• Provides happened-before relationship
between events

• Each object in Riak has a vector clock*

• Trade off space, speed, complexity for
safety

Handoff and
Rebalancing
• When cluster topology changes, data
must be rebalanced

• Handoff and rebalancing happen in the
background; no manual intervention
required*

• Trade off speed of convergence vs.
effects on cluster perfo

Gossip Protocol
• Nodes “gossip” their view of cluster state

• Enables nodes to store minimal cluster
state

• Can lead to network chatiness; in OTP,
all nodes are fully-connected

Append-only
Stores
• Riak has a pluggable backend
architecture

• Bitcask, LevelDB are used the most in
production depending on use-case

• All writes are appends to a file

• This provide crash safety and fast writes

• Periodic, background compaction is
required

Erlang/OTP
• Shared-nothing, immutable, message-
passing, functional, concurrent

• Distributed systems primitives in core
language

• OTP (Open Telecom Platform)

• Ericsson AXD-301: 99.9999999% uptime
(31ms/year)

